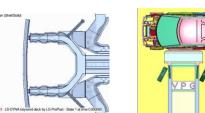
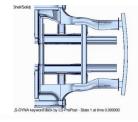
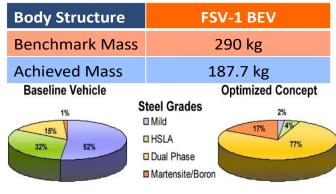
World Auto Steel Future Steel Vehicle


Challenge:


- Use a new performance-driven, holistic product development process (ACP) based on HEEDS to minimize mass of new Battery Electric Vehicle
- Loading conditions
 - Crash (LS-Dyna), NVH (Nastran), Handling (ADAMS)
- Design variables
 - Geometry, Gauge, Grade (AHSS)


IIHS Impact Crash Tests

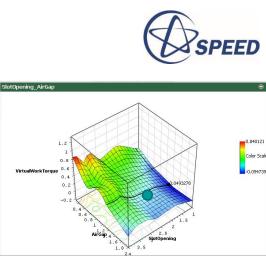
Results:

- ♦ 35% Mass Savings
- ♦ 5-Star Crash Safety Rating
- ♦ 70% Emissions Reduction
- ♦ No Cost Penalty

 Page 1
 Unrestricted | © Siemens 2021 | Siemens Digital Industries Software | Where today meets tomorrow.

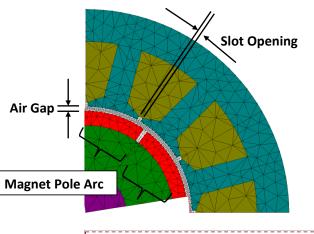
Customer Success: Electric Motor Design Study

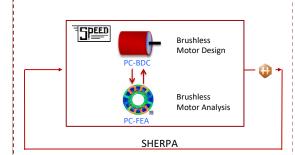
Challenge


- Minimize cogging torque
- Design variables
 - 100° < Magnet Pole Arc < 180°
 - 1 mm < Slot Opening (SO) < 4 mm
 - 0.3 mm < Air Gap (Gap) < 2 mm

Results

• 99% lower cogging torque

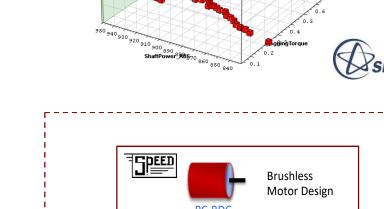

Baseline Design:


- Cogging Torque= 0.7185 Nm
- Magnet Pole Arc = 170°
- Slot Opening (SO) = 3.0 mm
- Air Gap (Gap) = 0.5 mm

Improved Design:

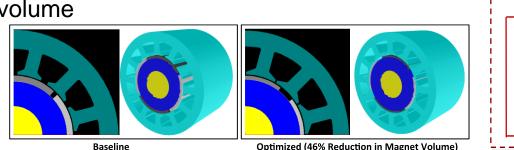
- Cogging Torque= 0.004 Nm
- Magnet Pole Arc = 123°
- Slot Opening (SO) = 1.15 mm
- Air Gap (Gap) = 1.35 mm

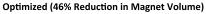
Customer Success: Electric Motor Design Study


Challenge:

- Minimize cogging torque and magnet volume
- Constraints (8):
 - 950 W < Shaft Power < 1050 W
 - 190 V < Induced Voltage < 200 V
 - Copper Losses < 100 W
 - Iron Losses < 20 W
 - Total Losses < 120 W
 - 1.4 T < Stator Flux Density < 1.6T
 - 1.4 T < Stator Yoke Flux < 1.6T
 - Rotor Yoke Flux Density < 1.6T

Results:


- 94% reduction in cogging torque
- 46% reduction in magnet volume


- Design variables (10):
 - 100° < Magnet Pole Arc < 180°
 - 1 mm < Slot Opening < 4 mm
 - 0.3 mm ≤ Air Gap ≤ 2 mm
 - 10 mm < Slot Depth < 17 mm
 - 50 < Number of Coils < 150
 - 60 mm < Stack Length < 80 mm
 - 4 A < Current Set Point < 7 A
 - 5 mm < Tooth Width < 10 mm
 - 1 mm < Magnet Thickness < 5 mm
 - 26 mm < Outer Rotor Radius < 36 mm

PC-FEA

SHERPA

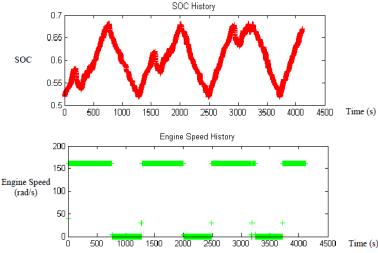
140**Beta**N

130

120

Brushless Motor Analysis

Michigan Economic Development Cooperation Hybrid Bus Design


Challenge:

- Maximize fuel economy for a series hybrid electric bus
- Constraints
 - Missed trace less than 5 mph
 - Maintain a battery charge greater than 51.75 %
 - Accelerate from 0-60 mph under 42 seconds
 - Accelerate from 0-30 mph under 10 seconds
- Design variables

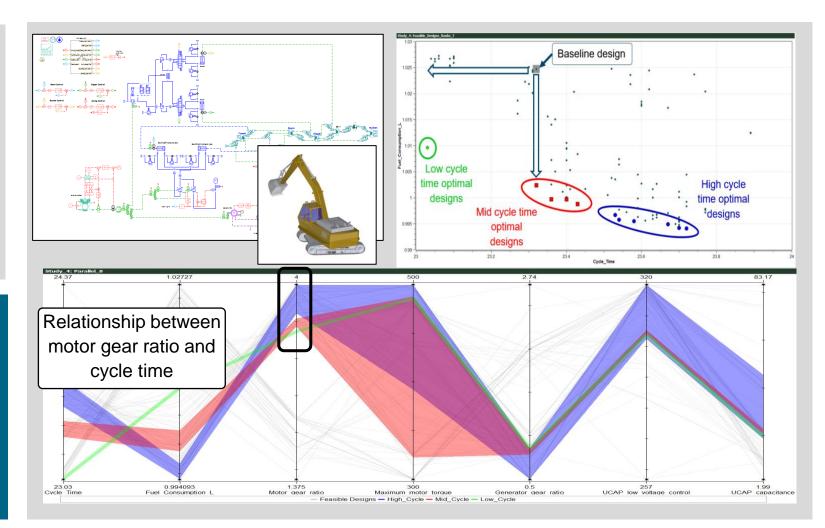
• Engine size, battery pack, electric motor, generator Results:

- Increased fuel economy by 9%
- Decreased missed trace from 15.7 mph to < 2.5 mph
- Decreased 0-60 acceleration time from 53 s to 25 s
- Decreased 0–30 acceleration time from 21 s to 7 s

Streamlining the Design Exploration Process

Application Example Excavator Performance Improvement with Electric Swirl Motor

Objective:

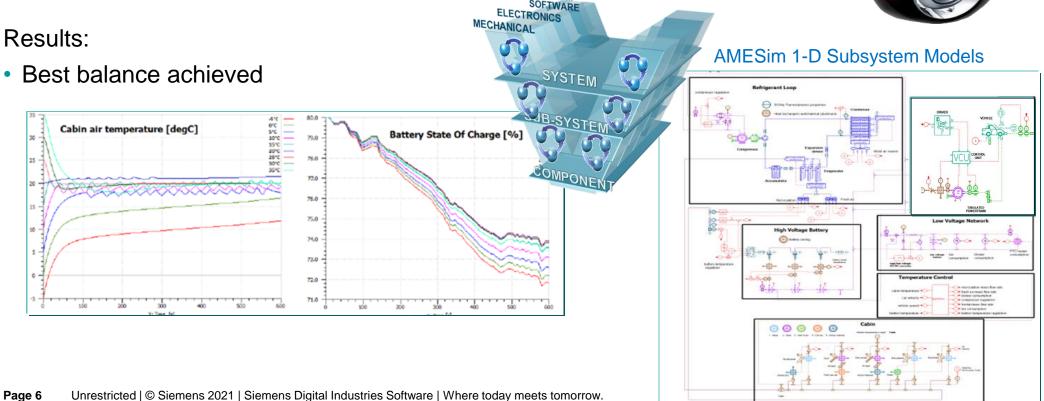

- Minimize operation cycle time
- Minimize fuel consumption Design variables (5):
- Electric motor torque
- Gearbox gear ratios
- Ultra capacitor size, and control scheme

Results:

500 design evaluations were performed

Designs were discovered which improved cycle time and fuel consumption compared to the original design

Discovered tradeoff relationship between fuel consumption and cycle time



Customer Success: Performance, Range & Comfort

Challenge:

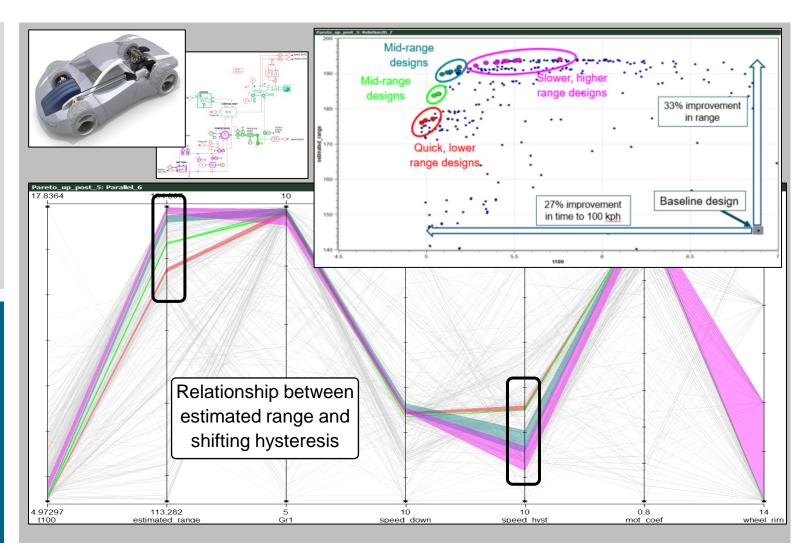
- Balance performance, range, and passenger comfort of an electric vehicle
- AMESim and Matlab/Simulink used to simulate 1D system behavior
- HEEDS adjust bypass orifice to improve system performance

Streamlining the Design Exploration Process

Application Example: Electric Vehicle Sizing

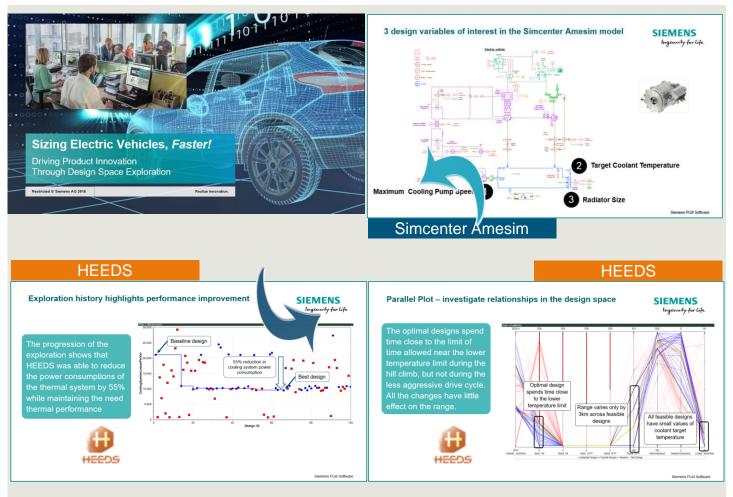
Objective:

- Minimize acceleration time (0 -100 km/h)
- Maximize range


Design variables (5):

- Torque Curve Coefficient
- Gear Ratio
- Downshift Speed
- Shifting Hysteresis
- Rim Diameter

Results:


500 design concepts were evaluated in five hours of simulation clock-time (5 cores used on Windows laptop)

Discovered tradeoff relationship between goals, with improvement over starting design ranging from 27% gain in acceleration to 33% longer range

Sizing an electric vehicle for optimal thermal performance

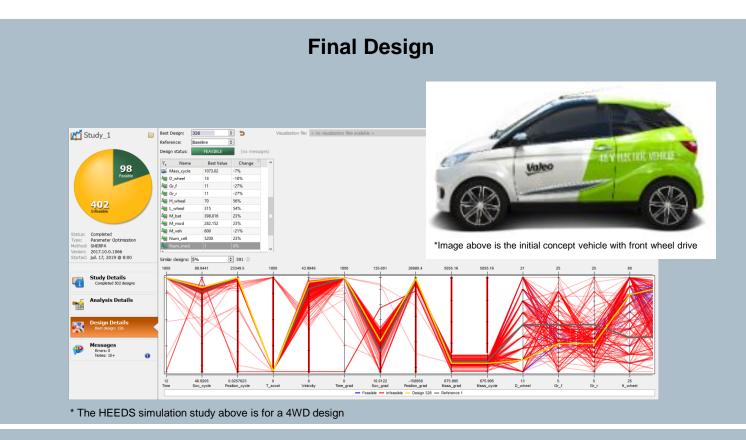
Challenge

The cooling system design of electric vehicles affects the thermal system performance and range, making it critical to find the best design.

Solution

Simcenter Amesim for electric vehicle thermal sizing coupled with HEEDS to scan the design space, in order to reduce the cooling system power requirements.

Benefit


- Find optimal cooling systems without affecting thermal performance and range
- Shorten product development time
- Validate the cooling control system

Valeo EEM Design Optimization of EV Architecture

Results:

- In 500 iterations, HEEDS improved the overall performance of a 4 wheel drive vehicle
- Reduced acceleration time by 14%
- Increased max. speed by 5%
- Increased vehicle range (WLTC Class 3) by 11%
- Reduced mass by 8%

HEEDS improved all 8 objectives in a single study, while satisfying all the constraints!